

Development Standards & Practices Used

We used standard industry practices as taught in our previous classes while

working on the Intelligent Code Editor. We are planning on using Test-Driven

Development as well for the project as it has been highly praised by professors

throughout the Software Engineering and Computer Science departments. This

will allow us to test the quality of the Intelligent Code Editor based on the

number of bugs we discover from our process. We are also planning on

implementing the design thinking process to allow us to be able to empathize

with the users and clients on the Intelligent Code Editor.

Summary of Requirements

● Ability for user to input code and natural language into an editor

● Ability to store the natural language and expected code translation

● Ability for plugin to classify and translate natural language to code

● Ability for user to translate the natural language to code

● Ability for code to be executed once translated

● Ability for multiple natural language statements to be translated to code at

once

● Fix any bugs that exist from previous versions

Applicable Courses from Iowa State University Curriculum
● COMS 227 (Introduction to Object-Oriented Programming)

● COMS 228 (Introduction to Data Structures)

● COMS 309 (Software Development Practices)

● COMS 230 (Discretes CMP Structures)

● COMS 311 (Algorithm Design and Analysis)

● SE 329 (Software Project Management)

● SE 339 (Software Architecture and Design)

● SE 362 (Object-Oriented Analysis and Design)

1

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

● IDE plugin Development

● Graph Neural Networks

● Semi-Supervised Learning for Neural Machine Translation

● Unsupervised Machine Translation

● Natural Language Processing

● Data Formatting and Cleansing

2

Table of Contents
1 Introduction 5

Acknowledgement 5

Problem and Project Statement 5

Operational Environment 5

Requirements 5

Intended Users and Uses 5

Assumptions and Limitations 6

Expected End Product and Deliverables 6

Project Plan 7

2.1 Task Decomposition 7

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 9

2.4 Project Timeline/Schedule 9

2.5 Project Tracking Procedures 10

2.6 Personnel Effort Requirements 10

2.7 Other Resource Requirements 11

2.8 Financial Requirements 11

3 Design 12

3.1 Previous Work And Literature 12

Design Thinking 13

Proposed Design 13

3.4 Technology Considerations 13

3.5 Design Analysis 14

Development Process 14

Design Plan 14

4 Testing 16

Unit Testing 16

3

Interface Testing 16

Acceptance Testing 16

Results 16

5 Implementation 17

6 Closing Material 17

6.1 Conclusion 17

6.2 References 17

6.3 Appendices 18

List of figures/tables/symbols/definitions

Figure 1: Gantt Chart 8

Figure 2: Module Diagram 15

Table 1: Personnel Effort Requirements 10-11

4

1 Introduction

1.1 ACKNOWLEDGEMENT

This project was started by last year’s senior design team sdmay 20-46.

1.2 PROBLEM AND PROJECT STATEMENT

Our project is an extension for a code editor that takes natural language statements and translates
them into functional code. We plan to achieve this by implementing a graph neural network to
classify words and phrases. This extension could change the way we approach programming. It
offers a new way to think about software problems and a more natural transition from traditional
solutions to syntactically correct solutions. We will expand upon this extension by implementing
code corrections and suggestions as well. This will further improve the user experience for users
new to programming and help them learn.

1.3 OPERATIONAL ENVIRONMENT

The end result of our project is a plugin for the IntelliJ IDEA Java IDE. As such, it will be able to run
on any computer capable of running the IDE. Additionally, the computer will need to have Python
and OpenNMT-py installed, and be actively running the OpenNMT-py server for the plugin to be
operational.

1.4 REQUIREMENTS
● To create a plugin to Intellij that is able to convert natural language to code.
● Fix any bugs that exist from previous developers.
● Refine and add code corrections and suggestions to help developers make better programs.
● Users should be able to input both code and natural language into their editor.
● The plugin should store both natural language and its expected translation.
● The plugin should be able to translate natural language to equivalent code.
● The plugin should allow users to convert their natural language statement to code after the

translation is complete.
● The code translation should run as-is, without modification by the user.
● The plugin should be able to translate multiple lines of natural language at once.
● The project will be entirely digital.
● All work on the project will be done remotely.

1.5 INTENDED USERS AND USES

Our plugin is designed for inexperienced Java developers who are still learning how to convert their
ideas into real code. With this in mind, our main users will be students in introductory
programming classes or individuals who are learning to program on their own. These users will use

5

the plugin to convert their natural language statements into code and to find common errors in
their code to make their programs run the way they want.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● The end user has an internet connection when they are programming.
● The end user will be able to pick the best code suggestions that fit their purpose.

Limitations:

● The final product will not work without an internet connection as it needs to access a code
translation server.

● Currently only works with Intellij for functionality implementation.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

We will improve upon the current system for translating natural language phrases into syntactically
correct code snippets. November 2020.

We will write a document describing instructions for users to install the extension and other initial
set-up steps. April 2021.

We will expand upon the extension to provide suggested corrections for common mistakes, and
auto complete code snippets. April 2021.

6

2 Project Plan

2.1 TASK DECOMPOSITION

Figure 1: Gantt Chart

Analyze Current Project

● Prepare new repository: Move code from the old repository to the new repository.
● Understand Current Translation Method: Understand how the version one code translates

natural language.
● Experiment with Current Project: Experiment with the version one code on our local

machines.

Understand Plugin Development

● Research Plugin Development in IntelliJ: Research how plugin development works in our
current IDE (IntelliJ).

● Experiment with Plugin Development: Experiment with plugin development on our local
machines.

Study of Natural Language Tools

● Research Graph Neural Networks: Research how graph neural networks can be used in
natural language processing.

● Research Unsupervised Learning: Research how unsupervised learning can be applied in
the project.

7

● Write Paper on Findings: Write a paper to deliver to the client on how graph neural
networks and unsupervised learning can be used.

● Identify Libraries for Natural Language Processing: Identify libraries that could be used
within our project to translate natural language into code.

Implement Graph Neural Network for Translation

● Integrate Library into IDE: Download our chosen library and add it into our project.
● Update Plugin to Use Library: Update the plugin to make it use the graph neural network

library instead of the old system.

Test and Improve Translations

● Develop Test Cases: Develop some test cases to ensure that the project meets the client’s
requirements.

● Identify Bugs in the Project: Identify bugs in the current project based on test cases.
● Fix Bugs Without Creating More Issues: Fix the identified bugs so that the project meets its

requirements without introducing new errors.

Study of Common Programming Errors

● Research Common Mistakes in Programs: Research common mistakes that developers
make when working on programs.

● Understand Ways to Fix Identified Errors: Determine the best ways that the identified
mistakes can be resolved.

Implement Code Correction Module

● Update Plugin to Search for Common Code Errors: The plugin should be capable of finding
common code errors as well as natural language.

● Update Plugin to Give Solutions to Common Errors: Expand the plugin’s capabilities to
give suggestions for common code errors as well as natural language translations.

Final Testing

● Implement Tests: Create tests for many use cases, including corner cases for maximum
coverage.

● Fix and Refactor the Code as Needed: As tests fail to pass, make any necessary changes to
the code base to fix the problem.

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Analyze Current Project

● If the plugin's code is not understood by the team future development could be slowed.
10%

● error getting the team members machines to run the code might occur. 90%

8

○ Mitigation plan: discuss issues running software with the client for insight.

Understand Plugin Development

● If the plugin development resources are not understood future development could be
slowed. 5%

Study of Natural Language Tools

● Struggling to comprehend graph neural networks will slow or halt progress. 20%

Implement graph neural network for code translation

● An improperly trained neural network will have a low accuracy rate. 14%

● Build errors might occur with the implementation of the module. 30%

Test and Improve Translations

● Fixing a bug has a chance to reveal new bugs. 40%

Study of Common Programming Errors

● People alway make errors and there will probably be a large number of different code
errors people make. 15%

Implement Code Correction Module

● Build errors might occur with the implementation of the module. 30%

Final Testing

● Tests are not implemented correctly and bugs that exist are not found through testing. 10%

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● The extension shall translate natural language into syntactically correct code snippets with
90% accuracy.

● The extension shall translate natural language phrases at a rate of 100 phrases per second.
● The extension shall provide auto-completion suggestions within 10 ms of the last

keystroke.
● The extension shall identify code errors with 80% accuracy.

2.4 PROJECT TIMELINE/SCHEDULE

The first step of the project was the analysis phase. As shown in Figure 3, this phase consists of
three parts: prepare, analyze, and experiment. We first move the old code into the new repository,
then we analyze the code to gain a better understanding of it, and lastly we experiment with the
code.

9

Secondly, the team started to research IntelliJ plugin development to get an understanding of how
plugins are made and how to work on the existing project. The team also might experiment with
plugin creation and implementation during the phase.

Third, we looked into Natural language tools. This phase includes researching graph neural
networks along with both semi-supervised and unsupervised learning and identifying the current
libraries to use. We will then write and present a paper for our client based on our findings.

After looking into natural language tools the team will be implementing a graph neural network to
quickly and accurately translate the natural language into code.

We then are going to create tests for the previous implementation. We will develop specific test
cases to cover as much area as we can to find bugs in the code. We will then try to fix any bugs that
we find without compromising the existing code.

We will develop new features into version 2 of the code. New features added will include
identification of common programming errors and suggested fixes for errors found.

Finally, we will add in test cases for the version 2 of the code. This will be a similar process as our
test cases before but will be geared more towards the version 2 of the code. We will then identify
and fix any bugs we find for version 2. We will also refactor the code as needed so other groups
down the line do not have a problem identifying the parts of the program and can work more easily
with it after we are gone.

2.5 PROJECT TRACKING PROCEDURES

For our project tracking we are using Git, Trello, and Discord. Git allows us to share the code
between each other and our client. Trello allows us to keep track of tasks that are planned, in
progress, and completed. The Trello is managed/maintained alongside the client. Discord is used
as a way for the team to communicate with each other and share helpful information and links.

2.6 PERSONNEL EFFORT REQUIREMENTS

10

Task Number of Hours

ANALYZE 11 hours

Move Old Code to New Repository 1 hour

Understand Version 1 Code 5 hours

Experiment with Version 1 Code 5 hours

RESEARCH 35 hours

Table 1: Personnel Effort Requirement

2.7 OTHER RESOURCE REQUIREMENTS

Given that our project is a plug-in for Intelli-j, we currently do not have any other needs for
physical parts or materials. We are also not expecting to need any physical parts as our project is
solely based on the plug-in and the integrated development environment. Our only other dedicated
requirement outside of physical is a dedicated GPU server to train our classification model on the
dataset.

2.8 FINANCIAL REQUIREMENTS

There are no financial resources required as everything we need to use is free/given to us. We are
also not expecting any surprise finances to appear throughout the course of the project.

11

Research IDE Plug-in Development 5 hours

Research Semi-Supervised Learning 10 hours

Research Unsupervised Learning 10 hours

Research Natural Language Processing 10 hours

VERSION 1 CODE 70 hours

Bug Fixes from Version 1 Code 20 hours

Improvements on Natural Learning from
Version 1 Code

50 hours

VERSION 2 CODE 85 hours

Research Common Types of Erroneous Code 10 hours

Implement Code Correction Model 75 hours

TESTING 100 hours

Write Unit and Integration Tests 25 hours

Run Usability Tests 25 hours

Fix and Refactor Code 50 hours

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Literature Review

Graph Neural Networks: A Review of Methods and Applications from Jie Zhou, Ganqu Cui, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, & Maosong Sun. (2019). Graph Neural Networks: A Review of Methods and
Applications.

Semi-Supervised Learning for Neural Machine Translation from Yong Cheng, Wei Xu, Zhongjun He,
Wei He, Hua Wu, Maosong Sun and Yang Liu

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, & Yang Liu. (2016).
Semi-Supervised Learning for Neural Machine Translation.

UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY from
Guillaume Lample , Alexis Conneau, Ludovic Denoyer, Marc’Aurelio Ranzato

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, & Marc'Aurelio Ranzato. (2018).
Unsupervised Machine Translation Using Monolingual Corpora Only.

Learning to Represent Programs with Graphs from Miltiadis Allamanis, Marc Brockschmidt,
Mahmoud Khademi

Miltiadis Allamanis, Marc Brockschmidt, & Mahmoud Khademi. (2018). Learning to
Represent Programs with Graphs.

These papers were graciously provided to us by both our client and advisor to give us an
introduction to Neural Networks as we had previously told both parties that none of us had any
prior knowledge of the topic.

Similar Products

Google Translate

● While not directly related to our project, Google Translate does something similar to ours
with taking one language and changing it to another language.

Other Neural Projects

● As we have seen in other papers on the subject, other projects out there exist with a similar
task as ours. The difference between ours and theirs is that ours is basically open source.
The other projects that have been talked about in other academic papers give no insight as
to what is being done in the project and how it is being applied. There is also no code
provided from these other projects so it is hard to tell if they are actually completed or
more theory based.

12

3.2 DESIGN THINKING

Our project’s problem is well defined because we are expanding on the work of a past senior design
group. We need to design a system that takes as input natural languages phrases, and produces
code snippets translated from the phrases. The client wants the system to be implemented with a
graph neural network to attempt to increase the accuracy of the system and expand on new uses for
graph neural networks.

While looking for libraries and resources for graph neural networks, we found Spektral as well as a
library by Microsoft and another independent library. After presenting these options to our client,
we were steered toward Spektral.

We need a graph neural network for our plug-in. We have looked into some different kinds of
graph neural networks - graph convolutional neural networks and gated graph neural networks.

3.3 PROPOSED DESIGN

A past group has implemented the project with a neural network. We will implement it with a
graph convolutional neural network. This will satisfy the functional requirement of using a graph
neural network. The previous group encountered issues with accuracy in their translations, and the
implementation of a GCN will also help in meeting that requirement. Based on our research, the
best way for us to meet the accuracy requirement is to run the natural language through 2 different
encoding methods. First, it will be put through a bidirectional LSTM layer so that each word will
incorporate information about words that are close to it in the sentence. Second, it will be put
through 2 layers of GCNs which will incorporate details about each word's syntactic and/or
semantic dependencies within the sentence.

Because the client requested that we use Spektral to develop the neural network, we will have a
server running on a remotely hosted linux VM that manages all interactions with the neural
network.

None of the standards are directly related to our project at the current moment but as the design
and implementation phase continue, standards could possibly come into play.

We plan to follow industry standards by documenting our work thoroughly, using a modular
design, and making a simple UI.

3.4 TECHNOLOGY CONSIDERATIONS

Strengths

For the user interface we are using IntelliJ. The strengths of this is that intelliJ is has an abundance
of documentation and a large community that uses and helps other users. Creating, using, and
installing IntelliJ plugins is really simple for both developers and users. We also looked into using
eclipse but after much discussion with the client and advisor, it was highly suggested that IntelliJ
would be the preferred IDE to work in.

13

For our neural network, we are using Spektral. Spektral is nice because it basically lays down the
groundwork for what we need to do with neural networks. It is also one of the limited libraries that
we are able to use when working with neural networks.

Weaknesses

As far as IntelliJ goes, one of the weaknesses is with the plugin. The plugin does not allow the user
to modify everything with the code editor. This problem was solved by the previous group by
modifying parts of the features and determining other methods of adding the features outside of
the IntelliJ plugin.

One of the weaknesses of using Spektral is that it does not run on Windows. Spektral only runs on
linux and MacOS and to get around this we are using linux virtual machines to be able to run
Spektral on our devices. Another weakness is that Spektral is a pretty niche program. While useful
to our project, there are not many other projects that use Spektral open source. This means that
there are not many examples of how to use Spektral and everything we develop is basically from
our own design using experiments of our own.

3.5 DESIGN ANALYSIS

As of now, we anticipate that the proposed design from section 3.3 will work with hopefully
minimal setbacks. We will have to modify all current code directly involved with translation from
natural language to working code as well as create a working graph neural network with minimal
external tools, but our team is learning more about graph neural networks each day and are
becoming more confident that this solution will be feasible within the school year.

If modifications to the design are required, it will likely be with our integration of the LSTM layer
with the graph neural network. We are currently in the process of researching how to get the two
layers to communicate with each other, and the best implementation of this communication is
subject to change as we learn more about each respective subject.

Otherwise as new, unforeseen challenges arise, obviously we will modify/iterate the design in any
way we feel works best for the successful development of the project. All necessary changes will be
approved by the client.

3.6 DEVELOPMENT PROCESS

Our team will follow an agile development process with two week sprints and weekly client
meetings to discuss any status updates and necessary changes. We chose agile because of its
iterative nature and ease of adaptability since we do anticipate unforeseen challenges with the
project in the future. We will likely also break out into two teams for development and integration
to make better use of our time.

Milestones have also been created to better keep track of where the team is in its development
schedule. The major milestones include full completion of the graph neural network on the server,
its integration with the version one plugin, and sufficient unit testing with various input strings. As
errors arise in testing, the agile development process should allow simple modifications to the
project code whenever necessary.

3.7 DESIGN PLAN

Firstly, the previous group struggled with accuracy in their natural language translations. Ideally,
with our creation of the functional graph neural network layers, this insufficiency in accuracy will
be remedied, so that is our first big design milestone. To accomplish this, we chose to use a library

14

with helpful built in functionality called Spektral, which we need to run on a linux virtual machine
since Spektral does not support Windows at this time.

Once we have created the graph neural network layers using Spektral, we can then move on to
creation of the LSTM layer. This layer will likely be easier to implement than the others, but
getting the LSTM layer to communicate with the graph neural network layers will be the tricky
part, and is subject to change.

After communication is established between the LSTM layer and the graph neural network layers,
we can begin integrating these translation layers into the version one code from last year's team to
time effectively make our server usable via an Intellij plugin. More research into Intellij plugin
functionality may be necessary at this point.

If we have extra time before testing once integration is complete, our team may look into creating a
new LSTM/graph neural network model to search for common programming errors. This will
likely take a large amount of time and will extend the testing process, but it will also make our
plugin much more marketable to consumers if feasible with our time constraints.

Finally, after all prior steps have been completed, testing can begin. Most testing will involve
examining the input and output of the graph neural network and making small modifications to
the code based on those results. More details on the testing phase can be found below.

Figure 2: Module Diagram

15

4 Testing
Most of our testing will revolve around testing the graph convolutional network(GCN) for

good output in the beginning of our project. This will be dependent on how much we can train the
GCN and how well it is created. We will also have to test the implementation of Keras, an API that
we plan on using to convert our natural language text into numerical values that the GCN can work
with.

For testing the natural language translation we can test using known input and relating it
to a desired output and the same with Keras for pre-processing. We will also have to test some
post-processing functionality to clean up the GCN’s output into usable code.

Beyond the language translation we will have to test our pugin’s ability to recognize and
suggest corrections to common code errors.

4.1 UNIT TESTING

- Neural Network Model
After we develop and train our neural network, it will produce a model that we will use for

the actual translation process. We will then run accuracy tests on the model to determine the
accuracy of its predictions, and update the model if necessary to increase accuracy.

4.2 INTERFACE TESTING

- Server-Model Interface
The only function of the server is to pass text into the model and retrieve the translated

text, so the connection is important to test. To test this interface, we will make a test model that
does nothing to the text (the text that goes in is the same as the text that goes out), and compare
the end text to the start text to ensure that things are being passed properly.

- Plugin-Server Interface
The plugin will need to send text to the server for translation, and it will need to receive

the translated text back to use later. To test the plugin side of this connection will be tested by
having a locally-hosted server to receive text to make sure it’s being sent properly, and send the text
back to make sure the plugin can receive a response properly. The server will be tested in a similar
way by having a program on the server VM send messages to the server to make sure it can receive
text properly, and then receive the translated text back to make sure text is being sent properly.

4.3 ACCEPTANCE TESTING
For our project’s acceptance testing we will be showing off the plugin’s ability to translate

natural english into functional java code to our client. From there if it is not accurate enough for
the client we could train the model more to increase its accuracy.

For the code correction suggestions our project will have to routinely and correctly identify
and correct common code errors. To involve our client in this step we would show off the plugin’s
ability to help fix these common errors.

4.4 RESULTS

We have not started testing yet.

16

5 Implementation
First, we plan on getting a GCN working that can take in english text and translate it into working
java code. From there, we plan on building a server around the GCN to handle client connections
for data that needs to be translated and checking so that the data is in a format that the GCN will
accept. Once the translation is complete the translated code is then relayed to the client so they
can use it in their project.

6 Closing Material

6.1 CONCLUSION

This semester has been focused on research and planning. Our goal is to expand on the previous
team’s code such that our program is better able to translate natural language to working java code.
We made some prototypes of programs to increase our understanding of the tools we were
required to use. Looking forward, our goals are to implement a Graph Convolutional Network to
aid in the Neural Machine Translation. We hope to see an improvement in translation accuracy
with this implementation.

6.2 REFERENCES

[1]Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, &
Maosong Sun. (2019). Graph Neural Networks: A Review of Methods and Applications.

[2]Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, & Yang Liu. (2016).
Semi-Supervised Learning for Neural Machine Translation.

[3]Guillaume Lample, Alexis Conneau, Ludovic Denoyer, & Marc'Aurelio Ranzato. (2018).
Unsupervised Machine Translation Using Monolingual Corpora Only.

[4]Miltiadis Allamanis, Marc Brockschmidt, & Mahmoud Khademi. (2018). Learning to Represent
Programs with Graphs.

[5]Liang Yao, Chengsheng Mao, & Yuan Luo. (2018). Graph Convolutional Networks for Text
Classification.

17

6.3 APPENDICES

[1]

[1]

18

[1]

19

